

Exposure-Response Functions for NO2 and COPD

Tessa Haverkate

19-02-2025

Funded by the European Unio

BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.

COPD and NO2

Chronic Obstructive Lung Disease^{1,2}

- 4th leading cause of death in 2021
- Restricted airflow
- Breathing problems
- COPD mortality attributable to air pollution
 - 23% ambient PM2.5
 - 13% 03
 - ? NO2

COPD and NO2

Chronic Obstructive Lung Disease^{1,2}

- 4th leading cause of death in 2021
- Restricted airflow
- Breathing problems
- COPD mortality attributable to air pollution
 - 23% ambient PM2.5
 - 13% 03
 - ? NO2

Nitrogen dioxide (NO2)³

- Toxic, gaseous air pollutant
- Burning of fossil fuels

Pictures: responsumhealth.com/conditions/copd, Pexels

Why Exposure-Response Functions?

Essential to quantify health impact of risk factors

Link estimates of exposure concentrations to projected response in a population

Pictures: Best-Cost

Systematic Literature Review and Meta-Analysis

1. Provide a comprehensive overview of existing evidence regarding the association between long-term exposure to ambient NO2 and COPD incidence, prevalence, and mortality and combined COPD incidence and mortality

1. Provide a comprehensive overview of existing evidence regarding the association between long-term exposure to ambient NO2 and COPD incidence, prevalence, and mortality and combined COPD incidence and mortality

- a. Systematic Literature Review
 - 2215 reports screened > 24 reports included
 - Mortality (n=12), incidence (n=8), prevalence (n=5)
 - ∘ 🔘 (n=12)
 - Mean NO2 exposure:
 - $12.7 68.4 \,\mu g/m^3$
 - 12.7-29.3 µg/m³

1. Provide a comprehensive overview of existing evidence regarding the association between long-term exposure to ambient NO2 and COPD incidence, prevalence, and mortality and combined COPD incidence and mortality

- a. Systematic Literature Review
- b. Meta-Analysis
 - 10 µg/m³ increase in NO2 & COPD incidence and mortality RR= 1.04, 95%CI: 1.00-1.09
 - |²=95·1%
 - RR= 1.08, 95%CI: 1.01-1.15
 - |²=92.4%

2. Derive and compare ERFs of the NO2-COPD association using the natural-cubic splines method and the **MR-BRT** approach

2. Derive and compare ERFs of the NO2-COPD association using the natural-cubic splines method and the **MR-BRT** approach

Natural cubic splines

- Piecewise polynomial 0
- Shape: flexible 0

MR-BRT (Meta Regression-Bayesian Regularized Trimmed) • Exclusion of outliers Shape: monotonic 0

Different Methods > Different shapes

2. Derive and compare ERFs of the NO2-COPD association using the natural-cubic splines method and the **MR-BRT** approach

Natural cubic splines

- **Piecewise polynomial** Ο
- Shape: flexible Ο

- **Exclusion of outliers** \bigcirc
- Shape: monotonic Ο

Log(RR)

Log(RR)

No2 exposure (ug/m3)

MR-BRT (Meta Regression-Bayesian Regularized Trimmed)

3. Derive region-specific curves for Europe

Natural cubic splines

- Piecewise polynomial 0
- Shape: flexible 0

MR-BRT (Meta Regression-Bayesian Regularized Trimmed) Exclusion of outliers 0

- Shape: monotonic Ο
 - 0.25
 - 0.20
 - 0.15 Log(RR) 0.10
 - 0.05
 - 0.00
 - -0.05

No2 exposure (ug/m3)

Complexity Establishing COPD-NO2 Relationship

- Considerable heterogeneity
 - Inconsistent COPD definitions, exposure assessments, and unaccounted confounding factors
- Methodological assumptions can influence interpretations of COPD-NO2 relationship
 - Implications for disease burden assessments
- Regional differences were evident
 - Need for tailored ERFs

counted confounding factors
-NO2 relationship

Complexity Establishing COPD-NO2 Relationship

- Considerable heterogeneity
 - Inconsistent COPD definitions, exposure assessments, and unaccounted confounding factors
- Methodological assumptions can influence interpretations of COPD-NO2 relationship
 - Implications for disease burden assessments
- Regional differences were evident
 - Need for tailored ERFs

To improve relevance and applicability of ERFs, methodological choices should align with...:

- Available exposure data;
- Regional exposure patterns; 0
- Expected shape of the exposure-response relationship; 0
- Objective of the analysis. 0

#BestCostEU

@BestCostEU

www.best-cost.eu

Tessa Haverkate

t.haverkate@erasmusmc.nl

BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.

the European Unio

- 1.Evaluation, I. f. H. M. a. (2021). "GBD compare." Retrieved 13 January, 2025, from https://vizhub.healthdata.org/gbd-compare/.
- 2. World Health Organization: WHO, World Health Organization: WHO. Chronic obstructive pulmonary disease (COPD) [Internet]. 2024. Available from: https://www.who.int/news-room/factsheets/detail/chronic-obstructive-pulmonary-disease-
- (copd)#:~:text=Overview,damaged%20or%20clogged%20with%20phlegm 3. Stavrakou, T., Müller, JF., Bauwens, M. et al. Satellite evidence for changes in the NO2 weekly cycle over large cities. Sci Rep 10, 10066 (2020). https://doi.org/10.1038/s41598-020-66891-0

