

[Webinar] Establishing new exposure-response functions for air pollutants and environmental noise

Long-term exposure to ambient $PM_{2.5}$ and lung cancer

Mariana O. Corda, Egas Moniz School of Health and Science

19/02/2025

Funded by the European Unio

BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.

european burden-eu of disease network

Lung cancer (LC) is the leading cause of cancer incidence and mortality worldwide, with 2.5 million people diagnosed with lung cancer and more than **1.8 million people died** from the disease, in 2022 (IARC 2024).

	INTRINSIC RISK FACTOS		EXT
This health condition is affected by	Random errors in DNA replication	Endogenous risk factors Biologic aging Genetic susceptibility 	
unmodifiable or partially modifiable		 DNA repair machinery Hormones Growth factors 	
and modifiable risk factors.		Inflammationetc.	
	NOT MODIFIABLE	PARTIALLY MODIFI	CABLE

(GBD 2021)

RINSIC RISK FACTOS Exogenous risk factors • Lifestyle and behavioural factors: smoking, diet, physical activity, etc. Tumor viruses Radiation Chemical carcinogens: Pollution Second-hand smoke Occupational carcinogens Etcs MODIFIABLE

Adapted from: EEA web report no. 01/2022(doi: 10.2800/08671

PM_{2.5} AND HEALTH IMPACT

More than 10% of Europe's cancer burden may be caused by exposure to air pollution, carcinogenic chemicals, radon, UV radiation and second-hand smoke.

Particulate matter (PM) is the leading risk factor for human health (2,933 DALYs per 10⁶ inhabitants) (GBD 2021).

PM is classified by the International Agency for Research on Cancer (IARC) as a group 1 carcinogen, indicates that no limit value for PM has been established below which health effects are not observed.

PM with a diameter of 2.5 µm or less (PM_{2.5}) is **one of the air pollutants** more harmful to human health.

IARC. Outdoor air pollution: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: volume 109. Lyon: International Agency for Research on Cancer; 2015 EEA web report no. 01/2022 (doi: 10.2800/086710)

To derive exposure-response relationships reflecting the relationship between lung cancer incidence and mortality cases as function of exposure to ambient particulate matter <2.5 µm in diameter (PM_{25}).

What is the relationship between PM_{2.5} and the incidence and mortality of lung cancer?

Is exposure to PM_{2.5} associated with an increased risk of developing lung cancer?

SYSTEMATIC LITERATURE REVIEW

Mariana O. Corda^{2,3}, Sara M. Pires⁴, Marta Clemente³, Hernán Gómez Redondo⁴, Joana Oliveira², Carla Martins³

¹ Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal ²Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Portugal ³NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal ⁴National Food Institute, Technical University of Denmark, Lyngby, Denmark

INCLUSION CRITERIA

- describing an association between long-term exposure to ambient PM_{2.5} and incidence and mortality of lung cancer using a relative measure of association
- published over the period from January 1, 2010

Often simpler, **assumes a fixed or random effect**, typically applies **linear or simple nonlinear** models, and pools data across studies.

MR-BRT*

Uses a more complex Bayesian framework, allowing for **flexible non-linear modelling and better handling of study-level covariates** (e.g. unexplained between study heterogeneity), and **uncertainties in the exposure-response relationship.**

*Meta-regression—bayesian, regularised, trimme

GBD study

RESULTING SYSTEMATIC REVIEW

~ 56% Incidence

• Classical meta-analysis:

A 10- μ g/m³ increase in long-term exposure PM_{2.5} increases risk of lung cancer incidence by 11%, for both sexes.

Author	Year	Country	Ris	k Ratio	RR	95% -C I	Weight	0.0
Gowda et al.	2019	USA			0.85	[0.53; 1.36]	1.3%	
Cierpiał-Wolan et al.	2023 Po	land (Below 75 yo)			1.02	[0.90; 1.15]	9.6%	
Chen et al.	2020	Canada		•	1.04	[1.03; 1.05]	17.3%	100
Guo et al.	2016	China		•	1.07	[1.06; 1.09]	17.2%	0.1
Cierpiał-Wolan et al.	2023 P	oland (Over 75 yo)		<u>.</u>	1.10	[1.00; 1.22]	11.1%	
Erhunmwunsee et al.	2022	USA			1.10	[1.10; 1.11]	17.3%	þ
Hart et al.	2015	Netherlands			1.17	[0.93; 1.47]	4.5%	La page
Lo et al.	2022	China			1.17	[1.01; 1.37]	7.5%	Stand
Cheng et al.	2022	USA			1.20	[1.01; 1.43]	6.5%	0.2
Gharibvand et al.	2017	USA			1.32	[0.88; 1.98]	1.7%	
Tomczak et al.	2016	Canada			1.34	[1.09; 1.64]	5.3%	
Chen et al.	2023	United Kingdom			2.14	[1.14; 4.01]	0.8%	
Random effects model (HK)			•	1.11	[1.04; 1.18]	100.0%	0.3
Prediction interval	-			+		[0.94; 1.31]		
Heterogeneity: $I^2 = 91\%$, τ^2	= 0.0047, p < 0.	01						
			0.5	1 2				

• Classical meta-analysis:

A 10- μ g/m³ increase in long-term exposure PM_{2.5} increases risk of lung cancer mortality by 14%, for both sexes.

Author	Year	Country	Risk Ratio	RR	95%-CI	Weight
Bauwelinck et al.	2022	Belgium	+	0.97	[0.95; 0.98]	11.3%
Wang et al.	2020	China (Male cohort)		1.00	[1.00; 1.00]	11.3%
Wang et al.	2020	China (Female cohort)		1.04	[1.03; 1.04]	11.3%
Pope et al.	2019	USA	-	1.08	[0.99; 1.18]	10.0%
Yin et al.	2017	China	+	1.12	[1.09; 1.16]	11.1%
Wong et al.	2016	China		1.14	[0.96; 1.36]	7.4%
Pun et al.	2017	USA	+	1.15	[1.12; 1.18]	11.1%
Klompmaker et al.	2021	Netherlands	+	1.37	[1.34; 1.40]	11.2%
Lepeule et al.	2012	USA		1.37	1.07: 1.75	5.5%
Katanoda et al.	2011	Japan		1.41	[1.21: 1.64]	8.1%
Shin et al.	2022	South Korea		— 1.55	[0.86; 2.79]	1.6%
Random effects model (HK)			•	1.14	[1.04; 1.25]	100.0%
Prediction interval					[0.85: 1.53]	
Heterogeneity: $I^2 = 100\%$, $\tau^2 = 0$.0151. p	= 0			• • •	
			0.5 1 2			

Meta-regression—bayesian, regularised, trimme (MR-BRT):

The estimated effect size for PM_{2.5} exposure on lung cancer mortality and incidence risk is 1.604, with a risk score value of 0.01599, suggesting a statistically significant association and with a star raking of 2.

Meta-regression—bayesian, regularised, trimme (MR-BRT):

The estimated effect size for PM_{2.5} exposure on lung cancer risk is 1.001, with a risk score value of 0.07481, and with a star raking of 2.

10

Meta-regression—bayesian, regularised, trimme (MR-BRT):

The estimated effect size for PM_{2.5} exposure on lung cancer risk is 1.845, with a risk score value of 0.09258, and with a star raking of 1.

Corda et al. (BEST-COST)

	Classical Meta-Analysis		MR-BRT		
	RR (95% IC)	p-value	Coeff	Star ranking	
PM _{2.5} - Lung cancer incidence	1.11 (1.04 - 1.18)	0.004	1.001	**	
PM _{2.5} - Lung cancer mortality	1.14 (1.04 - 1.25)	0.009	1.845	*	
PM _{2.5} - Lung cancer incidence and mortality	_	-	1.604	**	

- A comprehensive investigation to **assess long-term impact and the** ulletcosts of the exposure.
- Potential need for **policy updates based on evidence**.
- **Supporting** the development of prevention or intervention programs.

#BestCostEU

a BestCostEU

www.bestcost.eu

Mariana O. Corda, Egas Moniz School of Health and Science mcorda@egasmoniz.edu.pt

Funded by the European Union BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.

european burden-eu of disease network

