

## Exposure-response functions for traffic noise and cardiovascular diseases

Periklis Charalampous

19-02-2025



Funded by the European Unio

BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.



# Statement of the problem & Aim

- 2018 Environmental Noise Guidelines for the European Region
  - Quality of evidence supporting the association between transportation noise and cardiovascular disease outcomes varied considerably
  - Recent evidence?

#### Aim and objectives

- To conduct a systematic review incorporating a qualitative synthesis and quantitative meta-analysis of existing evidence regarding the association between long-term exposure to transportation noise sources (i.e. road traffic, railway, and aircraft) and **non-fatal** and **fatal** major cardiovascular disease outcomes
- To derive exposure-response functions for transportation noise sources and major cardiovascular disease outcomes.







### **Qualitative evidence synthesis**

- Six bibliographic databases and one search engine
- Cohort & case-control studies
- Studies reported on the noise exposure levels (e.g.  $L_{den}$ ) and defined how and when the exposure was measured
- Data screening and extraction
- Risk of bias assessment

### Conventional meta-analysis

- Mixed (and fixed) effects models
- Between-study heterogeneity
- Meta-regression to derive exposure-response curves

## (MR-BRT)

- GRADE guidelines
- Between-study heterogeneity
- Burden of Proof Risk Function / Risk outcome scores
- MR-BRT to derive exposure-response curves

### Quantitative evidence synthesis

– Risk measures: categorical *versus* continue values

### Meta-Regression-Bayesian, Regularized, Trimmed





### **Myocardial infraction**

#### **Road traffic noise**

#### **Railway noise**





### Conventional meta-analysis

**MR-BRT** 



#### Aircraft noise



### **Myocardial infraction**

|                            | Road traffic            | Railway noise           | Aircraft noise          |
|----------------------------|-------------------------|-------------------------|-------------------------|
| Conventional meta-analysis | RR = 1.02 (0.99-1.05)   | RR=1.01 (1.01-1.01)     | RR=1.02 (0.99-1.05)     |
|                            | p=0.08                  | p value=<0.0001         | p value=0.14            |
| MR-BRT                     | BPRF = 1.03 (0.93-1.15) | BPRF = 1.03 (1.01-1.05) | BPRF = 1.03 (1.00-1.05) |
|                            | ★                       | ★★                      | ★★                      |





**Stroke** 



#### **Railway noise**



#### Aircraft noise



### **Myocardial infraction**

|                            | Road traffic            | Railway noise           | Aircraft noise          |
|----------------------------|-------------------------|-------------------------|-------------------------|
| Conventional meta-analysis | RR = 1.02 (0.99-1.05)   | RR=1.01 (1.01-1.01)     | RR=1.02 (0.99-1.05)     |
|                            | p=0.08                  | p value=<0.0001         | p value=0.14            |
| MR-BRT                     | BPRF = 1.03 (0.93-1.15) | BPRF = 1.03 (1.01-1.05) | BPRF = 1.03 (1.00-1.05) |
|                            | ★                       | ★★                      | ★★                      |

### Stroke

|                            | Road traffic                    | Railway noise                   | Aircraft noise                  |
|----------------------------|---------------------------------|---------------------------------|---------------------------------|
| Conventional meta-analysis | RR = 1.01 (1.01-1.02)<br>p=0.04 | RR = 1.00 (1.00-1.01)<br>p=0.53 | RR = 1.00 (0.99-1.01)<br>p=0.84 |
| MR-BRT                     | BPRF = 1.01 (1.01-1.02)<br>★★   | BPRF = 1.00 (1.00-1.00)<br>★    | BPRF = 1.01 (0.98-1.02)         |
|                            |                                 |                                 |                                 |





Conventional meta-analysis results indicate a small increased **myocardial infraction** risk per 10dB for road traffic (2%), railway (1%), and aircraft noise (2%), with railway noise showing the strongest **evidence** (p < 0.0001).

- MR-BRT results indicate non-linear associations between **myocardial infarction, stroke**, and exposure to road traffic, railway, and aircraft noise.
- **Methodological differences** influence the **interpretation** of transportation noise effects on myocardial infarction and stroke, particularly in the exposure-response relationship.



## **#BestCostEU**



y in @BestCostEU

# www.best-cost.eu

Periklis Charalampous

p.charalampous@erasmusmc.nl



BEST-COST is funded by the European Union's Horizon Europe programme under Grant Agreement No.101095408.

Funded by the European Unio

